|
Publications
TUTZ, G., SCHMID, M. (2016): Modeling Discrete Time-to-Event Data. Springer Series in Statistics. TUTZ, G. (2012): Regression for Categorical Data. Cambridge University Press. TUTZ, G. (2000): Die Analyse kategorialer Daten - eine anwendungsorientierte Einführung in Logit-Modellierung und kategoriale Regression. Oldenbourg-Verlag. FAHRMEIR,
L., PIGEOT, I., KÜNSTLER,
R., TUTZ, G. (1997, 2009, 7. Auflage): Statistik
- der Weg zur Datenanalyse.
Springer-Verlag. FAHRMEIR, L., KÜNSTLER, R., PIGEOT, I., TUTZ, G.,CAPUTO A., LANG, S. (2004, 4. Auflage): Statistik-Aufgabenbuch. Springer-Verlag. CAPUTO A., FAHRMEIR, L., KÜNSTLER, R., LANG, S., PIGEOT-KÜBLER, I., TUTZ, G. (2008, 5. Auflage): Statistik-Aufgabenbuch. Springer-Verlag. FAHRMEIR,
L., HAMERLE, A., TUTZ,
G. (1996): Multivariate
statistische Verfahren. DeGruyter. FAHRMEIR, L., TUTZ, G. (1994, 2001): Multivariate statistical modelling based on generalized linear models. Springer Series in Statistics. TUTZ, G. (1990): Modelle für kategoriale Daten mit ordinalem Skalenniveau - parametrische und nonparametrische Ansätze. Vandenhoeck & Ruprecht-Verlag. HAMERLE, A., TUTZ, G. (1989): Diskrete Modelle zur Analyse von Verweildauern und Lebenszeiten. Campus Verlag. TUTZ, G. (1989): Latent Trait Modelle für ordinale Beobachtungen - Die statistische und messtheoretische Analyse von Paarvergleichsdaten. Springer-Verlag. TUTZ, G., BERGER, M. (2016): Separating Location and Dispersion in Ordinal Regression Models. Technical Report 186, Department of Statistics LMU. PÖßNECKER,
W., TUTZ, G. (2016): A
General Framework for the Selection of
Effect Type in Ordinal Regression. Technical
Report 186, Department of Statistics
LMU. BERGER,
M., TUTZ, G. (2015):
Tree-Structured Clustering in Fixed Effects
Models, http://arxiv.org/abs/1512.05169 SCHAUBERGER,
G., TUTZ, G. (2015):
Modelling Heterogeneity in Paired Comparison
Data - an L1 Penalty Approach with an
Application to Party Preference Data. Technical Report 183,
Department of Statistics LMU. JANITZA,
S., TUTZ, G. (2014):
Prediction Models for Time Discrete
Competing Risks. Technical
Report 177, Department of
Statistics LMU. TUTZ,
G., SCHNEIDER, M., IANNARIO,
M., PICCOLO, D. (2014):
Mixture Models for Ordinal Responses to
Account for Uncertainty of Choice. Technical
Report 175, Department of Statistics
LMU. TUTZ,
G., BERGER, M. (2014): Tree-Structured
Modelling of Categorical Predictors in
Regression. Technical
Report 169, Department of Statistics
LMU. TUTZ,
G., GROLL, A. (2014): Variable
Selection in Discrete Survival Models
Including Heterogeneity. Technical
Report 167, Department of Statistics
LMU. TUTZ,
G., OELKER, M. (2014): Modeling Clustered
Heterogeneity: Fixed Effects, Random
Effects and Mixtures. Technical
Report 156, Department of Statistics
LMU. HESS,
W., TUTZ, G., GERTHEISS,
J. (2014):
A Flexible Link Function
for Discrete-Time Duration Models.
Technical
Report 155, Department of Statistics
LMU. TUTZ,
G., PETRY, S. (2013):
Generalized Additive Models with Unknown
Link Function Including Variable Selection.
Technical
Report 145, Department of Statistics
LMU. PETRY,
S., TUTZ, G. (2011): The
OSCAR for Generalized Linear Models. Technical
Report 112, Department of Statistics
LMU. PETRY,
S., FLEXEDER, C., TUTZ,
G. (2011): Pairwise Fused Lasso. Technical
Report 102, Department of Statistics
LMU. ULBRICHT,
J., TUTZ, G. (2011):
Combining Quadratic Penalization and
Variable Selection via Forward Boosting. Technical
Report
99, Department of Statistics LMU. TUTZ,
G., BERGER, M. (2016):
Response Styles in Rating Scales -
Simultaneous Modelling of Content-Related
Effects and the Tendency to Middle or
Extreme Categories. Journal of
Educational and Behavioral Statistics,
to appear. TUTZ,
G., GERTHEISS, J. (2016):
Regularized Regression for Categorical Data.
Statistical Modelling, to appear. SCHAUBERGER, G., TUTZ, G. (2016): Detection of Differential Item Functioning in Rasch Models by Boosting Techniques. British Journal of Mathematical and Statistical Psychology, 69(1), 80-103. TUTZ,
G., BERGER, M. (2015): Item
focussed Trees for the Identification of
Items in Differential Item Functioning. Psychometrika,
to appear. JANITZA,
S., TUTZ, G., BOULESTEIX,
A.-L. (2015): Random Forests for Ordinal
Responses: Prediction and Variable
selection. Computational Statistics
& Data Analysis, to appear. TUTZ,
G., KOCH, D. (2015): Improved
Nearest Neighbor Classifiers by Weighting
and Selection of Predictors, Statistics
and Computing, to appear. SCHMID,
M., KÜCHENHOFF, H., HÖRAUF,
A., TUTZ, G. (2015): A
survival tree method for the analysis of
discrete event times in clinical
epidemiological studies. Statistics in
Medicine, to appear. MAUERER,
I., PÖßNECKER, W., THURNER,
P., TUTZ, G. (2015): Modeling electoral choices
in multiparty systems with
high-dimensional data: A regularized
selection of parameters using the Lasso
approach. Journal of Choice
Modelling, 16, 23-42. MÖST,
S., PÖßNECKER, W., TUTZ,
G. (2015): Variable
Selection for Discrete Competing Risks
Models.
Quality & Quantity, to appear. TUTZ,
G., RAMZAN, S. (2015): Improved
Methods for the Imputation of Missing Data
by Nearest Neighbor Methods. Computational
Statistics & Data Analysis, 90,
84-99. FUCHS,
K., GERTHEISS, J., TUTZ,
G., (2015): Nearest Neighbor Ensembles for
Functional Data with Interpretable Feature
Selection. Chemometrics and Intelligent
Laboratory Systems, 146, 186-197. GROLL,
A., SCHAUBERGER, G., TUTZ,
G. (2015): Prediction of major international
soccer tournaments based on team-specific
regularized Poisson regression: An
application to the FIFA World Cup 2014. Journal
of Quantitative Analysis of Sports, to
appear. OELKER,
M., TUTZ, G. (2015): A
Uniform Framework for the Combination of
Penalties in Generalized Structured Models.
Advances in Data Analysis and
Classification, published online. CASALICCHIO,
G., TUTZ, G., SCHAUBERGER,
G. (2015): Subject-specific
Bradley-Terry-Luce Models with Implicit
Variable Selection. Statistical
Modelling, to appear. TUTZ,
G., PÖßNECKER, W., UHLMANN,
L. (2015): Variable Selection in General
Multinomial Logit Models. Computational
Statistics & Data Analysis,
82, 207-222. TUTZ,
G., SCHAUBERGER, G. (2015):
Extended Ordered Pair Comparison Models with
Applications to Football Data from German
Bundesliga. Advances in Statistical Analysis,
99, 209-227. OELKER,
M.-R., PÖßNECKER, W., TUTZ,
G. (2015): Selection and Fusion of
Categorical Predictors with L0-Type
Penalties.
Statistical
Modelling, 15, 389-410. TUTZ,
G. (2015): Sequential Models for Ordered
Responses. In: W. Van der Linden, R.
Hambleton, Handbook of Item Response Theory:
Models, Statistical Tools and Applications,
Taylor & Francis, to appear. TUTZ,
G., SCHAUBERGER, G. (2015): A
Penalty Approach to Differential Item
Functioning in Rasch Models. Psychometrika,
80, 21-43. HEINZL,
F., TUTZ, G. (2014):
Clustering in Additive Mixed Models with
Approximate Dirichlet Process Mixtures: the
EM Approach. Statistics and Computing,
published online. OELKER,
M.-R., GERTHEISS, J., TUTZ,
G. (2014): Regularization and Model
Selection with Categorical Predictors and
Effect Modifiers in Generalized Linear
Models. Statistical
Modelling, 14, 157-177. TUTZ,
G., GERTHEISS, J.
(2014): Rating Scales as Predictors
- the Old Question of Scale Level
and some Answers, Psychometrika,
published online. GROLL,
A., TUTZ, G. (2014):
Variable Selection for Generalized
Linear Mixed Models by L1-Penalized
Estimation.
Statistics
and Computing, 24, 137-154. HEINZL,
F., TUTZ, G. (2014):
Clustering in linear mixed models with a
group fused lasso penalty. Biometrical
Journal, 1, 44-68. SCHAUBERGER,
G. TUTZ, G. (2014):
Regularization Methods in Economic
Forecasting. In: J. Beran, Y. Feng, H.
Hebbel, Empirical
Economic and Financial Research - Theory,
Methods and Practice, Advanced
Studies in Theoretical and Applied
Econometrics, Vol. 48, Springer. BÜHLMANN,
P., GERTHEISS, J., HIEKE,
S., KNEIB, T., MA,
S., SCHUMACHER, M., TUTZ,
G., WANG, C.-Y., WANG,
Z., ZIEGLER, A. (2014):
Discussion of The Evolution of Boosting
Algorithms and Extending
Statistical Boosting. Methods of
Information in Medicine, 53,
436-445. DRAXLER, C., TUTZ, G. (2014): Comparison of maximum likelihood with conditional composite likelihood estimation of person parameters in the Rasch model. Communications in Statistics - Simulation and Computation, to appear. ZAHID,
F.M., TUTZ, G. (2013):
Proportional Odds Models with
High-dimensional Data Structure. International
Statistical Review, 81, 388-406. ZAHID, F. M., TUTZ, G. (2013): Multinomial Logit Models with Implicit Variable Selection. Advances in Data Analysis and Classification, 7, 393-416. HEINZL,
F., TUTZ, G. (2013):
Clustering in Linear Mixed Models
with Dirichlet Process Mixtures
using EM Algorithm, Statistical
Modelling, 13, 41-67. TUTZ,
G., SCHAUBERGER, G.
(2013): Visualization of Categorical
Response Models - from Data Glyphs
to Parameter Glyphs. Journal
of Computational and Graphical
Statistics, 22, 156-177. ZAHID, F. M., TUTZ,
G.
(2013): Ridge
Estimation
for
Multinomial
Logit
Models
with
Symmetric
Side
Constraints.
Computational
Statistics, 28, 1017-1034. TUTZ,
G., GROLL, A. (2013):
Likelihood-Based Boosting in Binary
and Ordinal Random Effects Models. Journal
of Computational and Graphical
Statistics, 22, 356-378. GERTHEISS, J., STELZ,
V., TUTZ, G. (2013):
Regularization and Model Selection with
Categorical Covariates. In: B. Lausen, D.
Van den Poel, A. Ultsch, Algorithms
from and for Nature and Life,
215-222, Springer. PETRY,
S., TUTZ, G. (2012):
Shrinkage and Variable Selection
by Polytopes. Journal
of Statistical Planning and
Inference, 142,
48-64. GERTHEISS, J., TUTZ,
G.
(2012): Regularization
and
Model
Selection
with
Categorical
Effects
Modifiers.
Statistica
Sinica, 22, 957-982. GROLL, A., TUTZ,
G. (2012): Regularization for Generalized
Additive Mixed Models by Likelihood-Based
Boosting. Methods of Information in
Medicine, 51,
168-177. OELKER,
M-R., GERTHEISS, J.,
TUTZ, G. (2012):
Categorical Effect Modifiers in
Generalized Linear Models, Proceedings
of COMPSTAT 2012. ROBINZONOV,
N., TUTZ, G., HOTHORN,
T. (2012): Boosting Techniques for
Nonlinear Time Series Models. AStA
Advances in Statistical Analysis
96, 99-122. TUTZ, G., PETRY,
S. (2012): Nonparametric
Estimation of the Link Function
Including Variable Selection. Statistics
and Computing, 21, 545-561. LEITENSTORFER,
F., TUTZ, G. (2011):
Estimation of Single-Index Models
Based on Boosting Techniques. Statistical
Modelling, 11, 203-217. GERTHEISS, J., HOGGER,
S., OBERHAUSER, C., TUTZ,
G. (2011): Selection
of Ordinally Scaled Independent Variables
with Applications to International
Classification of Functioning Core Sets. Journal
of
the
Royal
Statistical Society: Series C,
60, 377-396. TUTZ, G. (2011):
Poisson Regression. In: M. Lovric, International
Encyclopedia of Statistical Sciences,
1075-1077, Springer. GERTHEISS, J., TUTZ,
G. (2010): Sparse
Modeling
of
Categorial
Explanatory
Variables.
The
Annals of Applied Statistics, 4, 2150-2180.
SLAWSKI, M., zu CASTELL, W., TUTZ, G. (2010): Feature Extraction Guided by Structural Information. The Annals of Applied Statistics, 4, 1056-1080. TUTZ, G., GERTHEISS,
J. (2010): Feature Extraction in Signal
Regression: A Boosting Technique for
Functional Data Regression. Journal of
Computational and Graphical
Statistics, 19, 154-174. TUTZ, G. (2010):
Editorial: Regularisation Methods in
Regression and Classification. Statistics
and Computing, 20,
117-118. TUTZ, G. (2010):
Regression für Zählvariablen. In: H. Best,
C. Wolf, Handbuch
der
sozialwissenschaftlichen Datenanalyse,
Vahlen Verlag, 859-876. TUTZ, G., GROLL,
A. (2010): Generalized Linear Mixed Models
Based on Boosting. In: T. Kneib, G. Tutz, Statistical
Modelling and Regression Structures -
Festschrift in Honour of Ludwig Fahrmeir,
Physica. TUTZ, G., STROBL, C. (2010): Generalisierte lineare Modelle. In: H. Holling, B. Schmitz, Handbuch der psychologischen Methoden und Evaluation, Hofgrefe Verlag, 509-517. SPIESS,
M., TUTZ, G. (2010):
Logistische Regressionsverfahren für
mehrkategoriale Zielvariablen. In: B.
Schmitz, H. Holling, Handbuch der
psychologischen Methoden und GERTHEISS,
J., TUTZ, G.
(2009): Feature Selection and
Weighting by Nearest Neighbor
Ensembles. Chemometrics
and Intelligent Laboratory
Systems, 99,
30-38. GERTHEISS, J., TUTZ, G. (2009): Penalized Regression with Ordinal Predictors. International Statistical Review, 77, 354-365. GERTHEISS, J., TUTZ, G. (2009): Variable Scaling and Nearest Neighbor Methods, Chemometrics, 23, 149-151. GERTHEISS, J., TUTZ,
G. (2009): Supervised Feature Selection in
Mass Spectrometry KNEIB, T., HOTHORN,
T., TUTZ, G.
(2009): Variable Selection and Model
Choice in Geoadditive
Regression Models. Biometrics, 65, 626-634. TUTZ, G., ULBRICHT, J. (2009): Penalized Regression with Correlation Based Penalty, Statistics and Computing, 19, 239-253. SHAFIK, N., TUTZ, G. (2009): Boosting Nonlinear Additive Autoregressive Time Series, Computational Statistics andData Analysis, 53, 2453-2464.GERTHEISS, J., Tutz, G. (2009): Statistische Tests. In: M. Schwaiger, A. Meyer, Theorien und Methoden der Betriebswirtschaft, Vahlen Verlag, 439-454. KRAEMER, N., BOULESTEIX,
A., TUTZ, G.
(2008): Penalized Partial Least
Squares Based on B-Splines. Chemometrics
and Intelligent Laboratory
Systems, 94, 60-69. BINDER,
H., TUTZ, G.
(2008): Fitting Generalized Additive
Models: A Comparison of Methods. Statistics
and
Computing,
18, 87-99. REITHINGER,
F., JANK, W., TUTZ,
G., SHMUELI, G. (2008): Smoothing
Sparse and Unevenly Sampled Curves
Using Semiparametric
Mixed Models: An Application to
Online Auctions. JRSS
Series
C:
Applied
Statistics, 57, 127-148. VAN DER
LINDE, A., TUTZ,
G. (2008): On
association in regression: the
coefficient of determination
revisited. Statistics,
42, 1-24. ULBRICHT, J. TUTZ, G. (2008): Boosting Correlation Based Penalization in Generalized Linear Models. In: Shalabh and C. Heumann, Recent Advances In Linear Models and Related Areas. Springer, 165-180. TUTZ,
G., BINDER, H. (2007): Boosting Ridge
Regression. Computational
Statistics & Data Analysis,
51, 6044-6059. TUTZ,
G., REITHINGER, F. (2007): Flexible semiparametric
mixed models. Statistics in Medicine,
26, 2872-2900. LEITENSTORFER,
F., TUTZ, G.
(2007): Generalized Monotonic
Regression Based on B-Splines with
an Application to Air Pollution
Data. Biostatistics, 8,
654-673. LEITENSTORFER,
F., TUTZ, G.
(2007): Knot Selection by Boosting
Techniques, Computational
Statistics
& Data Analysis, 51, 4605-4621. LEITENSTORFER,
F., TUTZ, G.
(2007): A Boosting Approach to
Generalized Monotonic Regression. In R. Decker, H.-J.
Lenz (Eds.), Advances in
Data Analysis, Proceedings of the
30th Annual Conference
of the Gesellschaft
für Klassifikation,
pp. 245-254, TUTZ,
G., LEITENSTORFER, F. (2007): Generalized
smooth monotonic regression in
additive modelling. Journal
of Computational and Graphical
Statistics, 16,
165-188. LEITENSTORFER,
F., TUTZ, G.
(2006): A Boosting Approach to
Generalized Monotonic Regression.
In: R. Decker, H.-J. Lenz (eds.), Advances in Data
Analysis, 245-254, TUTZ,
G. (2006):
Categorical Response Models. In: Encyclopedia
of Clinical Trials (to appear). TUTZ,
G. (2006):
Models for polytomous
data. In: P. Armitage,
T. Colton (eds.), Encyclopedia
of Biostatistics, second edition,
Wiley. EINBECK,
J., TUTZ, G.
(2006): Modelling
beyond Regression Functions: an
Application of Multimodal
Regression to Speed-Flow Data. Applied
Statistics
55, 461-475. TUTZ,
G., BINDER, H. (2006): Generalized
additive modelling with implicit
variable selection by likelihood
based boosting. Biometrics 62, 961-971. TUTZ,
G., LEITENSTORFER, F. (2006): Response
shrinkage estimators in binary
regression. Computational
Statistics & Data Analysis
50, 2878-2901. BOULSTEIX,
A. L., TUTZ, G. (2006): Identification
of Interaction Patterns and
Classification with Applications to
Microarray
Data. Computational Statistics
& Data Analysis 50, 783-802. KRAUSE,
R., TUTZ, G.
(2006): Genetic Algorithms for the
Selection of Smoothing Parameters in
Additive Models. Computational
Statistics 21, 8-31. TUTZ,
G., ULBRICHT, J. (2006): An Alternative
Approach to Regularization and
Variable Selection in High
Dimensional Regression Modelling.
In: J. Hinde,
J. Einbeck,
J. Newell (eds.) Proceedings
of the 21st
International Workshop on
Statistical Modelling, 486-493. EINBECK,
J., TUTZ, G.
(2006): The fitting of multifunctions:
an approach to nonparametric
multimodal regression. In A. Rizzi, M. Vichi
(eds.), COMPSTAT 2006,
Proceedings in Computational
Statistics,
1243-1250, LEITENSTORFER,
F., TUTZ, G.
(2006): Smoothing with Curvature
Constraints based on Boosting
Techniques. In A. Rizzi, M. Vichi
(eds.), COMPSTAT 2006,
Proceedings in Computational
Statistics,
1267-1276, TUTZ,
G. (2005):
Modelling of repeated ordered
measurements by isotonic sequential
regression. Statistical
Modelling 5, 269-287. TUTZ,
G., BINDER, H. (2005): Localized
Classification. Statistics
and Computing 15, 155-166.
TUTZ,
G., HECHENBICHLER, K. (2005): Aggregating
Classifiers With
Ordinal Response Structure. Journal
of Statistical Computation and
Simulation 75, 391-408. EINBECK, J., TUTZ,
G., EVERS, L.
(2005): Local principal curves. Statistics
and Computing 15, 301-313. KAUERMANN,
G., TUTZ, G., BRÜDERL,
J. (2005): The
Survival of Newly Founded Companies.
Journal of the Royal Statistical
Society A
168, 145-158 EINBECK,
J., TUTZ, G., EVERS,
L. (2005):
Exploring Multivariate Data
Structures with Local Principal
Curves. In: C. Weihs, W.
Gaul, Classification – the
Ubiquitous Challenge, 256-265.
HECHENBICHLER,
K., TUTZ, G.
(2005): Bagging, boosting and
Ordinal Classification. In: C. Weihs, W.
Gaul, Classification – the
Ubiquitous Challenge, 145-152. BINDER,
H., TUTZ, G.
(2004): Localized logistic
classification with variable
selection. In: J. Antoch
(Ed.) COMPSTAT 2004, Physica Verlag.
SPIESS,
M., TUTZ, G.
(2004): Alternative measures of the
explanatory power of multivariate
pro-bit models with continuous or
ordinal responses. Journal of
Mathematical Sociology 28,
125-146. TUTZ,
G., BINDER, H. (2004): Flexible
modelling of discrete failure time
including time-varying smooth
effects. Statistics
in Medicine 23, 2445-2461.
TUTZ,
G., SCHOLZ, T. (2004): Semiparametric
modelling of multicategorical
data. Journal of Statistical
Computation and Simulation 74,
183-200. BOULESTEIX,
A., TUTZ, G. STRIMMER,
K. (2003): A
CART-based Approach to Discover
Emerging Patterns in Microarray
Data, Bioinformatics 19,
1-8. KAUERMANN,
G., TUTZ, G.
(2003): Semiparametric
Modelling of Ordinal Data. Journal of
Computational and Graphical
analysis 12, 176-196.
KRAUSE,
R., TUTZ, G.
(2003): Simultaneous selection of
variables and smoothing parameter in
additive models. In: D.
Baier,
K.-D. Wernecke,
Innovations in Classification,
Data Analysis, and Information
Systems, 146-153. TUTZ,
G. (2003):
Generalized semiparametrically
structured mixed models. Computational
Statistics
and Data Analysis 46, 777-800.
TUTZ,
G. (2003):
Generalized semiparametrically
structured ordinal models. Biometrics
59, 263-273. TUTZ,
G., KAUERMANN, G. (2003): Generalized
linear random effects models with
varying coefficients. Computational
Statistics & Data Analysis
43, 13-28. DREESMAN,
J., TUTZ, G.
(2001): Nonstationary
conditional models for spatial data
based on varying coefficients. Journal
of the Royal Statistical Society
D 50, 1-15. KAUERMANN,
G., TUTZ, G.
(2001): Testing generalized linear
and semiparametric
models against smooth alternatives.
Journal of the Royal Statistical
Society B 63, 147-166. KAUERMANN,
G., TUTZ, G.
(2000): Local likelihood estimation
and bias reduction in varying
coefficient models. Journal of
Nonparametric Statistics 12,
343-371. KAUERMANN,
G., TUTZ, G.
(1999): On model diagnostics and
bootstrapping in varying coefficient
models. Biometrika
86, 119-128. SIMONOFF,
J., TUTZ, G.
(1999): Smoothing methods for
discrete data. In: M. Schimek (Hrsg):
Smoothing and Regression. Approaches, Computation
and Application, Wiley.
EDLICH,
S., KAUERMANN, G., TUTZ,
G. (1998):
Smoothing ordinal data by semiparametric
models. Proceedings
of
the 13th International Workshop
on Statistical Modelling.
TUTZ,
G., KAUERMANN, G. (1998): Locally
weighted least squares in
categorical varying-coefficient
models. In: R. Galata, H. Küchenhoff
(eds.) Econometrics in Theory &
Practice, Festschrift für Hans Schneeweiß
(p. 119-130). TUTZ,
G. (1998):
Time-Varying coefficients for
discrete panel data with an
application to business tendency
surveys. Jahrbücher
für Nationalökonomie
und Statistik 217, 334-344. KAUERMANN,
G., TUTZ, G.
(1997): Local estimators in
multivariate generalized linear
models with varying coefficients. Computational
Statistics 12, 193-208. KAUERMANN, G., TUTZ, G. (1997): Testing generalized linear models against smooth alternatives. Schriftenreihe der östereichischen Statistischen Gesellschaft Band 5, 190-194. TUTZ,
G. (1997):
Models for
polytomous
data. In: A. Agresti
(ed.) Categorical Data Analysis. Encyclopedia
of Biostatistics, Wiley. TUTZ,
G. (1997):
Sequential Models for Ordered
Responses. In: W. Van der Linden,
R. Hambleton
(Eds.), Handbook of Item
Response Theory (p. 139-152).
TUTZ,
G., PRITSCHER, L. (1996): Nonparametric
estimation of discrete hazard
functions. Lifetime Data
Analysis 2, 291-308. TUTZ,
G., HENNEVOGL, W. (1996): Random effects
in ordinal regression models. Computational
Statistics and Data Analysis
22, 537- 557. TUTZ,
G. (1995):
Competing risks models in discrete
time with nominal or ordinal
categories of response. Quality
& Quantity 29, 405-420. TUTZ,
G., GROSS, H.
(1995): Discrete kernels, parametric
models and loss functions in
discrete discrimination -- a
comparative study. ZOR-- Methods
and Models in Operations Research
42, 217-230. TUTZ,
G. (1995):
Smoothing for categorical data:
Discrete kernel regression and local
likelihood approaches. In:
H. H. Bock, W. Polasek
(Eds.), Data Analysis and
Information Systems 261-271,
Springer-Verlag.
FAHRMEIR,
L., TUTZ, G.
(1994): Dynamic stochastic models
for time-dependent ordered paired
comparison systems. Journal of
the American Statistical
Association 89, 1438-1449. TUTZ, G. (1993): Invariance principles and scale information in regression models. Methodika VII, 112-119. TUTZ, G. (1993): Regressionsanalyse mit einer ordinalen abhängigen Variable -- Modellierungsansätze im Rahmen verallgemeinerter lineare Modelle und Schätzungen im GLAMOUR. Allgemeines Statistisches Archiv 77, 183-204. TUTZ, G. (1992): Discrete survival time models using GLAMOUR. Biometrie und Informatik in Medizin und Biologie 23, 167-184. TUTZ, G. (1992): Graphische Methoden für kategorial-ordinale Daten. In: H. Enke, H. J. Gölles, H. R. Haux, H. K.-D. Wernecke (Eds.), Methoden und Werkzeuge für die exploratorische Datenanalyse. Fischer Verlag. TUTZ, G. (1991): Sequential models in ordinal regression. Computational Statistics & Data Analysis 11, 275-295. GEORG,
H., TUTZ, G. (1991): Diskrete Hazardraten-Modelle
in der Shell-Jugendstudie. Zentralarchiv für empirische
Sozialforschung 29, 81-93. TUTZ,
G. (1991):
Choice of smoothing parameters for
direct kernels in discrimination. Biometrical
Journal 33, 519-527. TUTZ,
G. (1991):
Consistency of cross-validatory
choice of smoothing parameters for
direct kernel estimates. Computational
Statistics Quarterly 4,
295-314. TUTZ,
G. (1990):
Smoothed categorical regression
based on direct kernel estimates. Journal
of Statistical Computation and
Simulation 36, 139-156. TUTZ,
G. (1990):
Log-linear parameterization in
discrete discriminant
analysis. ZOR -- Methods and
Models of Operations Research
34, 303-319. TUTZ,
G., MORAWITZ, B. (1990):
Parameterizations for business
survey data. ZOR -- Methods and
Models of Operations Research
34, 143-156. TUTZ,
G. (1990):
Sequential item response models with
an ordered response. British
Journal of Statistical and
Mathematical Psychology 43,
39-55. TUTZ,
G. (1989): On
cross-validation for discrete kernel
estimates in discrimination. Communications
in Statistics, Theory and Methods
11, 4145-4162. TUTZ,
G. (1989):
Compound regression models for
categorical ordinal data. Biometrical
Journal 31, 259-272. TUTZ,
G. (1988):
Sufficiency of variables in discrete
discriminant
analysis. Statistical Papers/Statistische
Hefte
29, 257 - 269. TUTZ,
G. (1988):
Smoothing for discrete kernels in
discrimination. Biometrical
Journal 6, 729-739. TUTZ,
G. (1986): An
alternative choice of smoothing for
kernel-based density estimates in
discrete discriminant
analysis. Biometrika
73, 405-4116. TUTZ, G. (1986): Bradley-Terry-Luce models with an ordered response. Journal of Mathematical Psychology 30, 306-316. TUTZ, G. (1985): Diskrete probabilistische Reaktionsmodelle als kategoriale Regressionsansätze. Archiv für Psychologie 2, 99-114. TUTZ,
G. (1984):
Verzerrungskorrektur bei additiven
Schätzern der Trefferrate. In:
H. H. Bock (Ed.), Studien
zur Klassifikation, Band 15, (pp 122-131). TUTZ, G. (1984): Smoothed additive estimators for nonerror rates in multiple discriminant analysis. Pattern Recognition 18, 151-159. FAHRMEIR, L., HAMERLE, A., TUTZ, G. (1982): Zur Modellwahl und Variablenselektion bei nichtmetrischen Klassifikationsproblemen. In: Ihm, J. Dahlberg (Eds.) Studien zur Klassifikation, Band 10. Frankfurt: Indeks Verlag. HAMERLE, A., TUTZ, G. (1980): Goodness of fit tests for probabilistic measurement models. Journal of Mathematical Psychology 21, 153-167. HAMERLE, A., TUTZ, G. (1980): Zur experimentellen Validierung von probabilistischen verbundenen Meßstrukturen. Zeitschrift für experimentelle und angewandte Psychologie 27, 213-230. HAMERLE,
A., TUTZ, G. (1980): Kategoriale
Reaktionen in multifaktoriellen
Versuchsplänen und mehrdimensionale
Zusammenhangsanalysen. Archiv für Psychologie 133, 53-58. |